

Geotermia, biomasa y microgeneración

Sr. Ronny A. Rodriguez Chaves Ministerio de ambiente y energía de Costa Rica

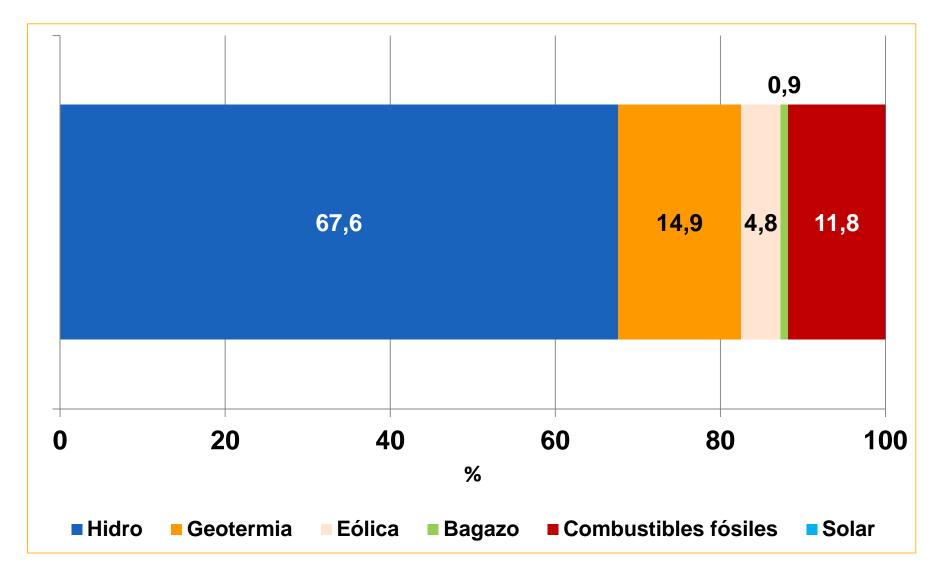
Estrategia para el desarrollo futuro del sector electricidad

Desarrollo a partir de fuentes renovables disponibles en el país, acorde con política de carbono neutralidad al 2021.

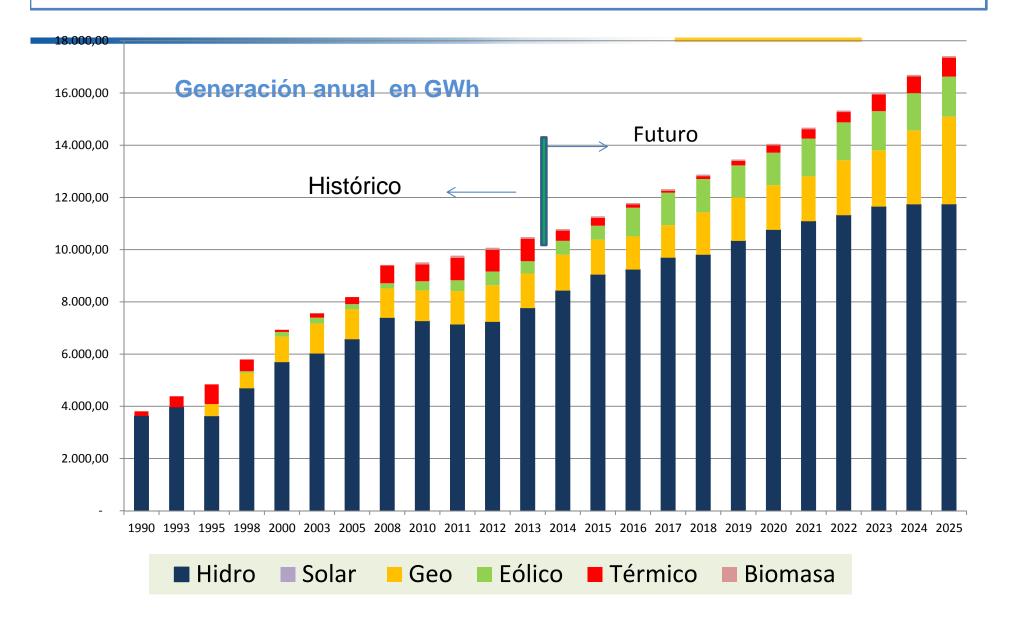
Se debe dar importancia a las valoraciones técnicas, económicas, ambientales y sociales.

Optimización de la matriz energética nacional.

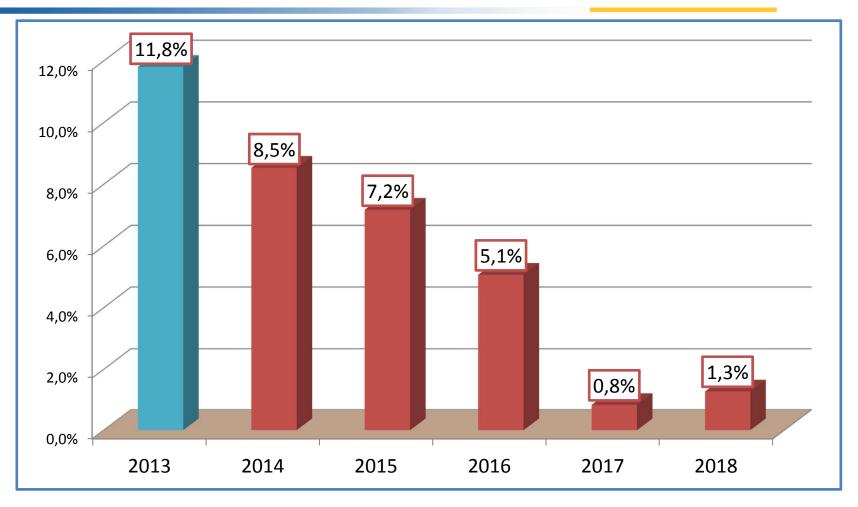
Participación activa en el Mercado Eléctrico Regional


Participación de las empresas eléctricas, cooperativas, Sector privado y actores sociales.

Alcanzar la máxima cobertura eléctrica nacional (actual es de 99. 4 %)



Generación de electricidad por fuente Año 2013

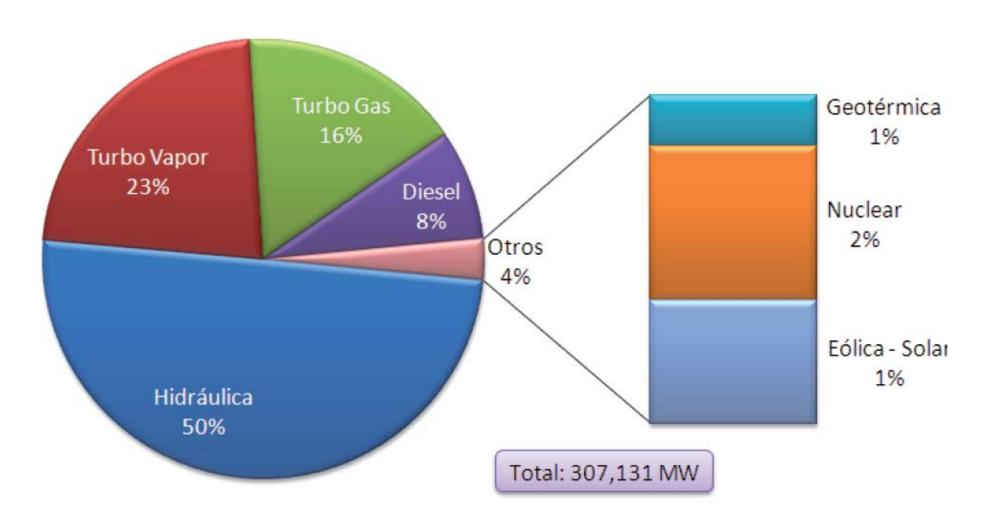

Fuente: ICE, Centro Nacional de Control de Energía, Sistema de Información del S.E.N, diciembre 2013.

GENERACIÓN DE ELECTRICIDAD POR TIPO DE FUENTE PERÍODO 1990-2025

Generación térmica periodo 2013 – 2018 (Datos en % de generación por año)

Mapa de Ruta década de los 2020s

- •HIDROELECTRICA DE GRAN EMBALSES (620 MW)
- GAS NATURAL
- •GEOTERMICAS
- EOLICAS Y SOLARES
- •HIDROS MENORES


•BIOMASA Y RESIDUOS SOLIDOS

Gituación actual, tendencias y retos del Sector eléctrico en América Latina y el Caribe

Distribución de la Capacidad Instalada por tipo de tecnología

Fuente: OLADE - SIEE: Datos al 2010

CAPACIDAD EOLICA

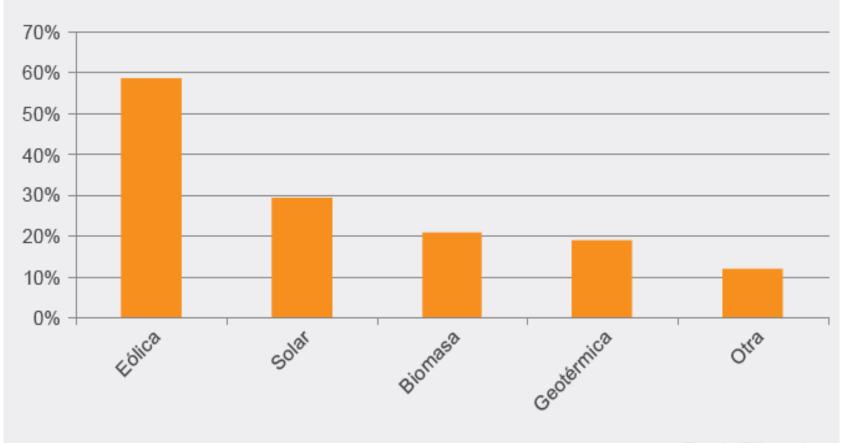
	Capacidad Instalada	
País	MW	%
Brasil	1,509	47%
México	873	27%
Chile	205	6%
Argentina	130	4%
Costa Rica	132	4%
Honduras	102	3%
Rep. Dominicana	33	1%
Resto del Caribe	91	3%
Otros	128	4%
ALyC	3,203	100%

Fuente: GWEC, 2012

CAPACIDAD GEOTERMICA

	Poter	ncial	Сара	cidad
Pais	MW	%	MW	%
Argentina	2,010	6%		0%
Bolivia	2,490	7%		0%
Chile	2,350	7 %		0%
Colombia	2,210	6%		0%
Costa Rica	2,900	8%	166	11%
Ecuador	1,700	5%		0%
El Salvador	2,210	6%	204	14%
Grenada	1,110	3%		0%
Guatemala	3,320	9%	49	3%
Honduras	990	3%		0%
Jamaica	100	0%		0%
México	6,510	18%	965	66%
Nicaragua	3,340	9%	88	6%
Panamá	450	1%		0%
Perú	2,990	8%		0%
Venezuela	910	3%		0%
ALyC	35,590	100%	1,471	100%

Fuente: OLADE - SIEE, datos del 2010


Societal Benefits of Renewable Energies in LAC

	US\$ cents/kWh
Avoided Climate Change Impacts	· · · · · · · · · · · · · · · · · · ·
Avoided Costs of Emissions	13.7
Avoided Costs of Climate Change Adaptation	21.5 or more*
Avoided Pollution	
Avoided Costs of Air Pollution Control Measures	12.0
Energy Security	WWW.
Avoided Costs of Oil Price Volatility (value of fuel price hedge)	0.0041-0.0095
Economic	
Balance of Payments Gains	1.22
Net Job Creation	1.16
Total with Climate Impacts	28.5
Total without Climate Impacts	14.7

Fuente: IDB, Societal benefits from renewable energy in Latin America and the Caribbean, 2014.

¿Qué tipo de energía renovable no convencional crecerá más en los próximos 5 años?

Fuente: BNamericas

Sistema eléctrico en Costa Rica

CONDICIONES NATURALES FAVORABLES

Geotermia

 Existencia de volcanes a lo largo de la mayor parte del territorio nacional: importante potencial geotérmico.

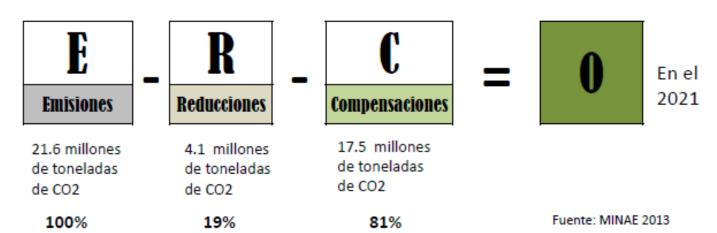
Hidroeléctrica

 País montañoso con alta pluviosidad: excelente potencial de recursos hidroeléctricos.

Solar & Biomasa

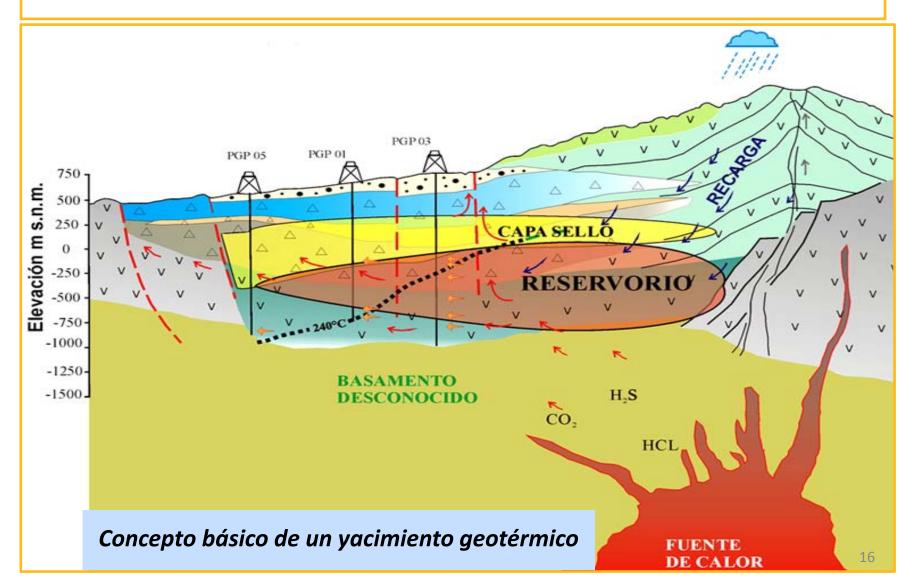
 Territorio ubicado en zona tropical con intensa radiación solar y terrenos agrícolas: potencial solar y de biomasa.

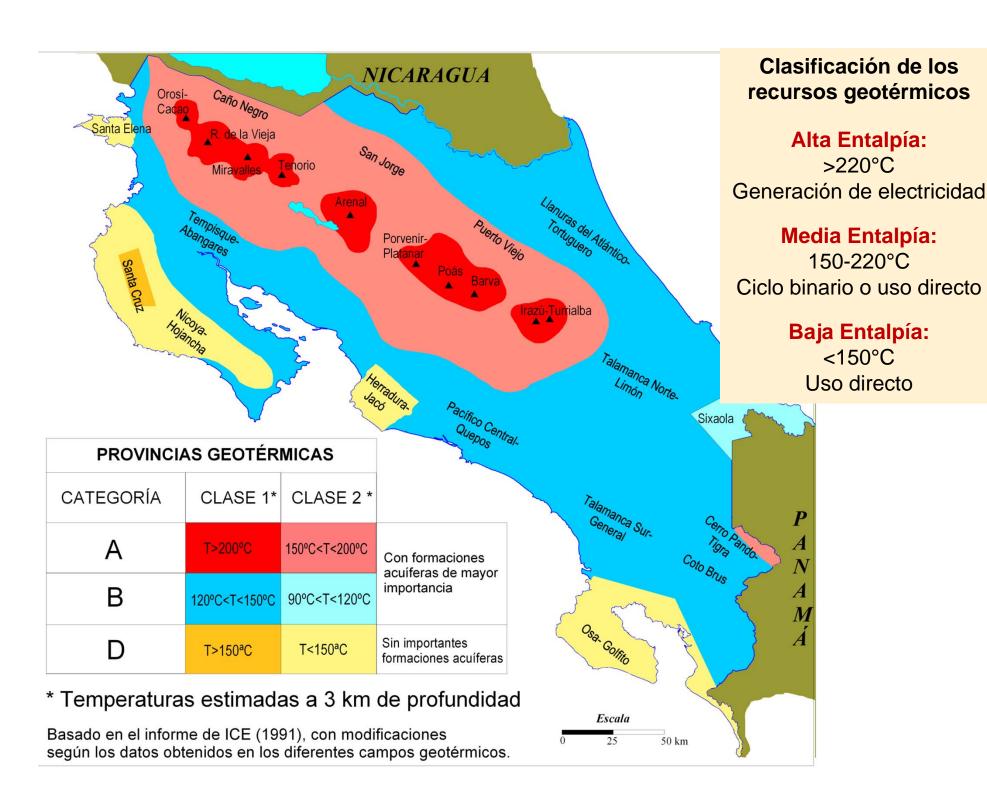
Eólica


Territorio con vientos fuertes y sostenidos en pasos de la divisoria continental: gran potencial eólico.

Meta país: C neutral 2021

81% de avance hacia Meta de C-Neutralidad en 2021


Definición:



¿ Qué es la Geotermia?

VENTAJAS DE LA ENERGÍA GEOTÉRMICA

- ✓ Es energía limpia
- ✓ Residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo y el carbón.
- ✓ Sistema de gran ahorro, tanto económico como energético.
- ✓ Ausencia de ruidos exteriores.
- ✓ No está sujeta a precios internacionales, sino que siempre puede mantenerse a precios nacionales o locales.
- √ Área de terreno requerido por las plantas geotérmicas por megavatio es menor que otro tipo de plantas.

DESVENTAJAS DE LA ENERGÍA GEOTÉRMICA

DESVENTAJAS

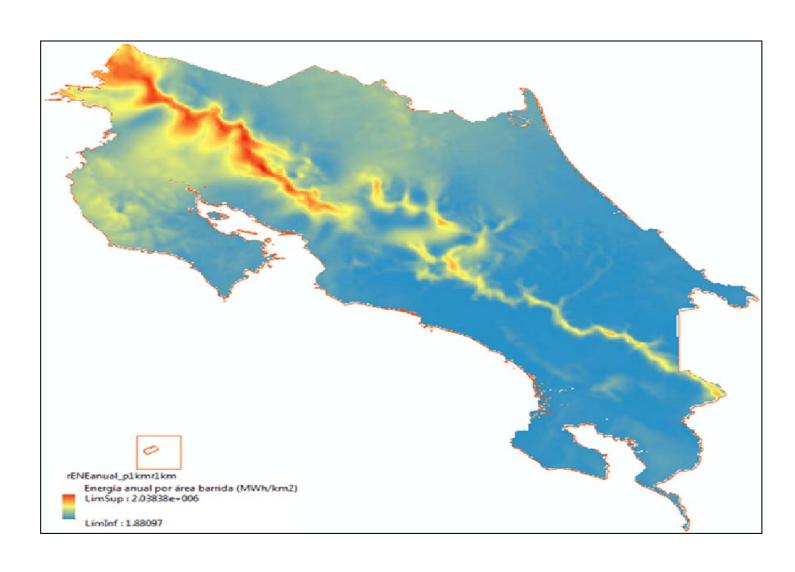
- ✓ En ciertos casos produce emisión de ácido sulfhídrico
- ✓ Contaminación de aguas próximas con sustancias como arsénico, amoníaco, etc.
- ✓ Contaminación térmica.
- ✓ Deterioro del paisaje.
- ✓ No se puede transportar (como energía primaria).
- ✓ No está disponible más que en determinados lugares.

minae

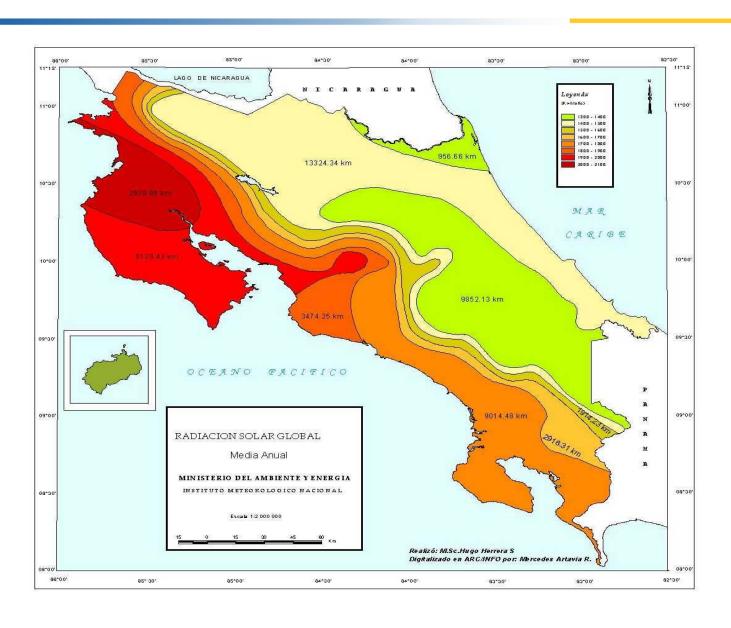
Geotérmicos en Costa Rica

Proyectos en operación		
Proyecto	Tipo	MW
Miravalles 1	ICE	55,1
Miravalles 2	ICE	55,1
Miravalles 3	Private	29,6
Boca de Pozo	ICE	5,0
Miravalles V	ICE	20,0
Pailas	ICE	41,6
Total		206,4

Capacidad (identificada)		
Proyecto	Promedio MW	
Miravalles	189	
Rincón de la Vieja	157	
Irazú, Turrialba	115	
Tenorio	110	
Platanar	109	
Poás	103	
Barva	97	
Fortuna	69	
Orosí-Cacao	37	
Total	986	


Fuente: ICE, 2012

Otras fuentes renovables



MAPA POTENCIAL EOLICO

ENERGIA SOLAR EN COSTA RICA

POTENCIAL DE BIOMASA POR TIPO DE RESIDUO

RESIDUO BIOMÁSICO

MW

Cachaza	2.4
Brosa	2.5
Mucilago	1.7
Efluente de la extracción de la palma	4.4
Pollinaza	20.8
Cerdaza	0.5
	8.2
Boñiga	
Desechos de frutas	11.2
Residuos mataderos	1.8
Sebo	1.3
Residuos de embutidos	0.0
Bagazo	122.9
RAC Caña de azúcar	115.8
Cascarilla del café	4.8
Cascarilla del arroz	7.8
Fibra seca del pinzote de banano	2.4
Cáscara de coquito de palma	8.1
Fibra del mesocarpio de palma	11.2
Fibra seca del pinzote de palma	16.5
Aserrín	23.7
Burucha y otros residuos de madera	4.1
Leña cafetales	90.2
Leña madera	37.9
RAC Piña	134.5
Corona de la piña	0.4
	0.7

CAPACIDAD TOTAL DE GENERACIÓN

635

ENERGÍA DE BIOMASA EN COSTA RICA

- ✓ Proyectos aprovechan como fuente energética el bagazo de caña y han sido desarrollados por empresa privada.
- ✓ Algunas empresas privadas agroindustriales utilizan otras fuentes energéticas como la cascarilla de arroz para consumo propio.

POTENCIAL DE ALGUNAS FUENTES DE BIOMASA PARA PRODUCCIÓN DE BIOGAS

RESIDUO BIOMÁSICO	MW
Efluente de la extracción de la palma	4.4
Pollinaza	20.8
Cerdaza	0.5
Boñiga	8.2
Desechos de frutas	11.2
Cascarilla del café	4.8
Cascarilla del arroz	7.8
Cáscara de coquito de palma	8.1

GENERACION ELECTRICA A PARTIR DE BIOGAS

Almacenamiento de biogás

El efluente es un abono orgánico de gran valor nutritivo que puede utilizarse en cultivos o pastos de la finca.

Biodigestor de mayor tamaño

PLAN PILOTO GENERACION DISTRIBUIDA PARA AUTOCONSUMO

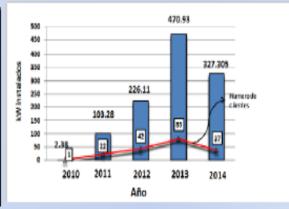
Resumen Ejecutivo (al 30 de mayo 2014)

Datos generales

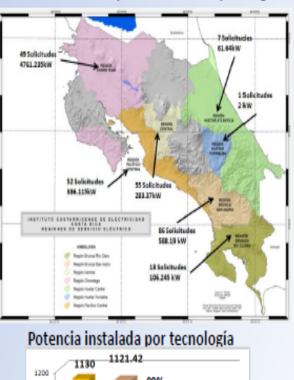
Objetivo:

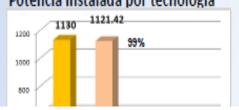
- → Analizar nuevas tecnologías y el efecto en redes distribución
- → Analizar mercado potencial

Resultados


PLAN PILOTO GENERACION DISTRIBUIDA Resumen proyectos Mayo 2014		
Total Solicitudes Recibidas	263	
Total Solicitudes Aprobadas	221	
Total Clientes Interconectados	185	
Total kW Interconectados	1130.005	
Total kW Solicitudes Recibidas a Intercon.	6188.795	
Pendiente kWh a Interconectar	5058.790	

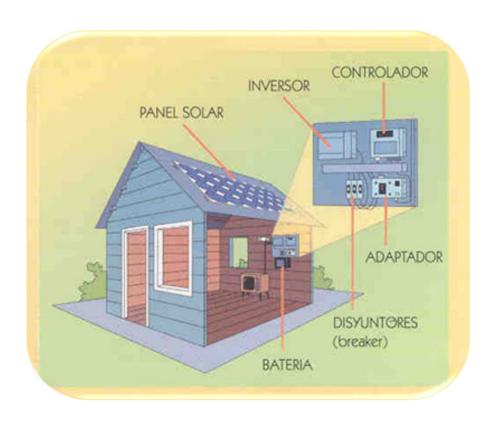
En las solicitudes recibidas se incluye el proyecto de biomasa con una potencia de 4 500 kW


Tecnologías


- → Solar
- → Eólica
- → Micro-hidro
- → Biomasa

Potencia (kW) y clientes interconectados por año

No. solicitudes y kW solicitados por Región



Cerca de 200 clientes interconectados voluntariamente

ENERGÍA SOLAR: SOLUCIONES PARA VIVIENDA RURAL

- ✓ Más de 2000 soluciones instaladas
- √ 3 4 horas de iluminación (3 bombillos)
- √ 6 7 horas de radio
- √ 3 4 horas de TV
- ✓ Costo: USD 1 500 USD 1 800
- ✓ Clientes del ICE en zonas aislada
- ✓ Es de alto costo, más de USD 10 000/kW
- ✓ Las baterías pueden durar hasta 5 años, y el sistema hasta 20 años.

